

Cyber Security Risks in Power System Operation -How to address this issue as power system researchers

Philipp Linnartz, DigiSect 2023, 21st April 2023

Introduction

2

Cyber attacks and power system operation

Increasing number of distributed energy resources (DERs) and controllable loads

Deployment of ICT to monitor and control these assets and to utilize flexibility for operational or market purposes

Increasing number of remotely controllable actuators

Increasing attack surface and impact potential

- Cyber attacks pose an increasing threat to the operation of cyberphysical systems, i.e. power systems
- Already successful attack that gained access to grid operator control system and led to serious disruption of services (Ukraine 2015)
- > Power system as critical infrastructure has to be resilient against cyber attacks

How to develop methods to enhance resilience?

Increasing complexity

Motivation

Main Issue

- Artificial cyberattacks cannot be applied to critical power system infrastructure
- No cyberattack benchmark data available
- No testing, verification or validation of mitigation strategies possible
- Environment for cyberattack replication necessary

Requirements

- As close to reality as possible
- Flexible & Scalable

• ...

- Automated scenario generation, deployment and analysis
- Defined interfaces between hardware and simulation

Suitable environments?

Laboratory

- Assets:
 - MV/LV grid with distribution substations
 - DER and loads remotely controllable via RTUs
 - Ring-shaped network topology of including switches and firewalls
 - Grid control room for monitoring and control
 - Communication using standard protocols (IEC 104, Modbus)

Benefits:

- Accessible (also for our attacker)
- Real components, real data traffic

Drawbacks:

4

- Limited number of assets
- Low flexibility

Co-Simulation

- Simulating the power system, operation logics, and (emulating) ICT processes in a common environment
 - Central scheduler synchronizes multiple simulations during operation time
 - Scenario configuration based on infrastructure modeling
 - Various OT and IT devices integrated
- Modularity to depict various use cases
- Flexibility and scalability
- Interfaces to connect hardware

Overview of environment

6

Environment enables flexible and scalable analysis of multi-staged cyber-attacks

Use cases

- Flexible environment for cyberattack replication can be used for:
 - Development and verification of concepts and systems (e.g., intrusion detection systems)
 - Generation of attack data / datasets
 - Training (e.g. response of operator personnel) and teaching
 - Testing of operational and control concepts and strategies
 - ...

7

• **Goal:** Develop and implement concepts to make power system operation resilient against cyberattacks

Looking forward to the discussion

Philipp Linnartz

Chief Engineer Active Energy Distribution Grids IAEW at RWTH Aachen University

p.linnartz@iaew.rwth-aachen.de

References & Acknowledgements

D. J. S. Cardenas, A. Hahn and C. -C. Liu, "Assessing Cyber-Physical Risks of IoT-Based Energy Devices in Grid [1] Operations," in IEEE Access, vol. 8, pp. 61161-61173, 2020, doi: 10.1109/ACCESS.2020.2983313

Funded by (excerpt):

for Research & Innovation

Research environment developed in close cooperation with experts from:

