

Challenges in Cyber-Physical Energy Systems - of agents and data -

Astrid Nieße | Uni Oldenburg & OFFIS

Challenges in Cyber-Physical Energy Systems - of agents and data -

Challenges in Cyber-Physical Energy Systems - of agents and data -

Challenges in Cyber-Physical Energy Systems

buzzwords & bosses

visions & excitement

data

Challenges in Cyber-Physical Energy Systems

buzzwords & bosses

visions & excitement

pain

On the power of buzzwords

Once upon a time ...

New challenges

Energy systems are critical infrastructures (CRITIS)

Phenomena and instabilities can spread in short time

- > Connected systems on both information and electrotechnical system layer
- > Instabilities might cascade in real-time
- > Cross-sectoral effects

Digitalization comes with new challenges

- > Security
- > Complexity
- > Regulation

Multi-criteria optimization means conflicting goals

> Monetory, technical, political, ...

Just in the middle of a fundamental transformation ...

Handle Complexity

Adaptive Control Flexibility Potential

Transformation Innovation

New challenges

Energy systems are critical infrastructures (CRITIS)

Phenomena and instabilities can spread in short time

- > Connected systems on both information and electrotechnical system layer
- > Instabilities might cascade in real-time
- > Cross-sectoral effects

Digitalization comes with new challenges

- > Security
- > Complexity
- > Regulation

Multi-criteria optimization means conflicting goals

> Monetory, technical, political, ...

Just in the middle of a fundamental transformation ...

Handle Complexity

Adaptive Control Flexibility Potentia

Transformation Innovation

Cyber-physical energy systems New challenges: Handle complexity

Restruct: Integration, segregation und substitution of system componentes	Scalability
	Safety
Security	
Relocation of functionality	Integration with existing SCADA- systems
Compatibity	Real-time requirements
Data analytics	Constraints and effects across sectors

New challenges

Energy systems are critical infrastructures (CRITIS)

Phenomena and instabilities can spread in short time

- > Connected systems on both information and electrotechnical system layer
- > Instabilities might cascade in real-time
- > Cross-sectoral effects

Digitalization comes with new challenges

- > Security
- > Complexity
- > Regulation

Multi-criteria optimization means conflicting goals

> Monetory, technical, political, ...

Just in the middle of a fundamental transformation ...

Handle Complexity

Adaptive Control Flexibility Potential

Transformation Innovation

Challenges

Adaptive Control Flexibility Potential

Transformation Innovation

buzzwords & bosses CPES

multi-agent systems

data

Controlled Self-organization & Artificial Intelligence

"Artificial Intelligence is the science of making **machines** do things that would require **intelligence*** if done by **men**."

- Marvin Minsky, 1966

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Earning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Distributed Artificial Intelligence

For controlled self-organisation

Distributed AI is a part of AI research dealing with the development of **distributed solutions** for complex and / or large scale problems.

Technical basis: Multi-agent systems

- > Software agents = intelligent, autonomous software
- > Multi-agent systems = communicating and interacting agents with special characteristics
- > Includes learning / trained models

Simple agents, complex systems

Nature-inspired coordination and emergence

Emergence in MAS

- > Reduced complexity by simple agents
- > Complex system response as emergence from interacting agents

Self-organization

> Avoid Single-Point-of-Failure problems by distributing control

Quelle: Touahmi, Yaniss & Burlutskiy, Nikolay & Lee, Kongwoo & Lee, Beom. (2012). Congestion Avoidance for Multiple Micro-Robots Using the Behaviour of Fish Schools. International Journal of Advanced Robotic Systems. 9. 10.5772/51190.

Agent-based control and agent-based simulation

x? D_{o_n} a_0 a₁ ٧! a_3 a_2

Agent-based control

Agent-based simulation

> Control components in the field

- > Understand interactions
- > Design systems

Agent-based control

Plants, Network, Markets

Self-X-agent systems for the use of decentralized flexibilities

- > Self-optimizing multi-purpose operation management in a swarm
- > Self-organizing flexibility for decentralized redispatch
- > Self-healing, blackstart-capable digitized distribution grids

Challenges addressed so far:

- > Algorithmic challenges: Distributed Optimization Algorithms (COHDA, WINZENT)
- > Implementation challenges: Appropriate agent framework from design phase to the field (ongoing: mango)
- Co-simulation challenges: Modeling of the communication infrastructure (OMNET, mosaik-coupled)
- > Transfer to the field challenges: Agent-based simulation & co-simulation to lab testing to hybrid testing to the field (battery storage swarm in field test)

Time warp ...2012Research pro2015Foundation
markets bas

Research project Smart Nord: Dynamic Virtual Power Plants

Foundation of a start-up for flexibility placement on energy markets based on dynVPPs

Stopped start-up and reintegrated tool in research activities Developed OSS aiomas \rightarrow later: mango for agent-based control

Extended view on system operation and resilience

Began to answer industry requirements "we need agents!"

Field trial for FCR successfully finished, products at industry partners

Agent-based control of a swarm of batteries

A project done with be.storaged GmbH

Battery storage as crucial components for energy system transformation

- > Primary use: Peak load control in industry
- > Use remaining flexibility for grid and market purposes

Distributed battery swarm

- > Software agents with autonoumous characteristics
- > Fast and robust optimization

Pilot project tested in the field

> be.storaged as lead partner

Flexibility Management and Provision of Balancing Services with Battery-Electric Automated Guided Vehicles in the Hamburg Container Terminal Altenwerder

Images provided by and copyright with HHLA.

Container Terminal Altenwerder (CTA)

Setting the scene

Images provided by and copyright with HHLA.

Container Terminal Altenwerder (CTA)

Setting the scene

Container Terminal Altenwerder (CTA)

Schematic layout

Image provided by and copyright with HHLA.

Battery-electric Automated Guided Vehicles (AGVs)

Electrification (Li-Ion) of formerly diesel-electric AGV fleet

Images provided by and copyright with HHLA.

90 battery-electric AGVs + 18 Automated Charging Stations ≈ 4 MW symmetrical flexibility

Provision of Frequency Containment Reserve

Schematic system overview

Challenge: Reliably providing flexibility without disturbing the logistical processes.

Provision of Frequency Containment Reserve

Process

What is flexibility?

Number of AGV and ACS per time interval that can be removed from the logistics process without impairing it

Vision: Al-empowered Energy Systems

Decentralized, decarbonized, efficient and resilient CPES operation

- State estimation
- Anomaly detection
- Learn cyber-resilience strategies

- Learn constraints & operation
- Distributed ancillary service provision

Agents: Towards Controlled Self-Organization in the Field Wrap up & Lessons Learned

(1) Understand energy systems as self-organizing systems

> Use software agents as abstraction model

(2) Use observer/controller paradigm

- > Tap potential of distributed systems in critical infrastructures
- (3) Use the full range of distributed control and distributed algorithms
- > Manage transformation to post-fossile energy systems

Bring some time & be humble

- > Paradigms change not always in an interruptive manner
- > System operation has to be guaranteed
- > Understand regulatory constraints

Challenges in Cyber-Physical Energy Systems

buzzwords & bosses

visions & excitement

data

Challenges in Cyber-Physical Energy Systems

buzzwords & bosses

visions & excitement

pain

Learning is about data

- State estimation
- Anomaly detection
- Learn cyber-resilience strategies

- Learn constraints & operation
- Distributed ancillary service provision

Simulation is about data

- State estimation
- Anomaly detection
- Learn cyber-resilience strategies

- Learn constraints & operation
- Distributed ancillary service provision

Preparation for field trials is about data

- State estimation
- Anomaly detection
- Learn cyber-resilience strategies

- Learn constraints & operation
- Distributed ancillary service provision

Data – Digital Objects in Energy System Research

Still at the very beginning of a FAIR universe

Datasets

- Timeseries e.g. weather, power input (wind, solar...), demand
- Demographic data

Software

- Grid Computation Frameworks
- Co-Simulation Frameworks
- Agent-based sim. frameworks

Models

- Devices (Wind, PV, ...)
- Networks, Operational models

Scenarios

- Energy system transformation long term / short term
- Benchmark grids and device configurations
- Benchmark/Reference scenarios
- User acceptance scenarios

Workflows

- Detailed simulation configuration
- Best practices for public involvement

Data in CPES research

FAIRness is still to come

- > Findability
- > Accessibility
- > Interoperability
- > Reusability

Challenges in Cyber-Physical Energy Systems

- of agents and data -

