CENTER FOR TRANSPORT TECHNOLOGIES

FLAME RESISTANT MAGNESIUM ALLOYS

- Increased flammability resistance and good mechanical properties
- Flammability resistance certified acc. to the Federal Aviation Administration
- Remarkable cheaper than alloys with comparable flame resistance
- Processability in various casting processes (e.g. high pressure die casting, Thixomolding)

MATERIALS FOR TOMORROW

Because of its low density, its high specific strength and its almost unrestricted availability, magnesium is a **very popular lightweight material**. It is particularly suitable for applications in the mobility sector when it comes to **weight and emissions reduction**.

In a research project, LKR scientists managed it to develop magnesium alloys, which show the capability to self-extinguish in case of a fire.

This improvement in the fire resistance was achieved by means of the specific addition of elements which positively influence the oxidation behavior of the material.

Stefan Gneiger AIT Scientist at LKR

"Our investigations are focused mainly on alloys containing small amounts of calcium – calcium is cost-effective and widely available. Additionally, rare earth ele-

ments can be added to increase specific properties and to create tailored alloys for different applications."

BEFORE: MAGNESIUMALLOYS AZ91 AND AM60

AFTERWARDS: ADDITION OF CALCIUM AND YTTRIUM

CERTIFICATION

Passed flammability test according to FAA: FAA Aircraft Materials Fire Test Handbook, Chapter 25; Oil Burner Flammability Test for Magnesium Alloy Seat Structure

TEST RESULTS:	Sample 1	Sample 2	Sample 3		
Initial Weight Measured in Grams	210	210	209		sed
Residual Weight Measured in Grams	210	210	209		
Weight loss Calculated in %	0,00	0,00	0,00	(Max. Avr. < 10%)	ass
Start of Melting (Exposure time sec)	65	67	65		t P
Sustained ignition (Exposure time sec)	-	-	-	(Min. ≤ 120 sec)	Tes
Extinguished (Timed in Seconds)	-	-	-		

Conditioning / Ca	libration
(min 24 HRS) 21 55% +/- 10 % relative humidity	° +/- 3°C
in 04.07.2016	15:30
out 24.08.2016	11:00

Please refer to Vauth "LAB LOG" Ref: **No. 13736** for detailed calibration results and references

The average weight loss is: 0 % (limit Max .10 %) No ignition

APPLICATION

- Arm- and backrests of aircraft seats
- Housings and covers of aircraft engines

As a subsidiary of AIT LKR Leichtmetallkompetenzzentrum Ranshofen GmbH is

development approach to lightweight construction in the vehicle sector - from new metal alloys and process technology to material-related structural design.

This makes LKR a powerful and independent partner for your development projects.

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH

Center for Transport Technologies LKR Leichtmetallkompetenzzentrum Ranshofen GmbH Lamprechtshausenerstraße 61 5282 Ranshofen-Braunau

Stefan Gneiger

stefan.gneiger@ait.ac.at

www.ait.ac.at/en/lkr